Муниципальное бюджетное общеобразовательное учреждение «Шаховская средняя общеобразовательная школа»

Рассмотрено

на заседании педагогического

Протокол № /

or « As » at yes 20/9r.

Согласовано

Заместитель директора

МБОУ «Наховская СОШ» /С. Рязанова / « Д» абъест 20 г.

Утверждено

Директор

МБОУ «Наховская СОШ»

Приказ №/ от ч » сесто

## Рабочая программа по учебному предмету «КИМИХ»

для обучения на уровне основного общего образования (базовый уровень) Учителя химии Гриневой Галины Александровны

#### Пояснительная записка

Рабочая программа по химии составлена на основе

- Федерального компонента государственного стандарта общего образования, утвержденного приказом Минобразования РФ № 1089 от 05.03.2004;
- Примерной программы полного общего образования по химии,
- авторской программы «Программа курса химии для 8-11 классов общеобразовательных учреждений» / О.С. Габриелян. 5-ое изд., стереотип.
- М.: Дрофа, соответствующей Федеральному компоненту государственного стандарта общего образования и допущенной Министерством образования и науки Российской Федерации
- учебного плана МБОУ «Шаховская СОШ»,
- инструктивно-методического письма ОГАОУ ДПО БелИРО «О преподавании предмета «Химия» в общеобразовательных учреждениях Белгородской области».
- Положения МБОУ Шаховская СОШ» «О рабочей программе учебных курсов, предметов, дисциплин, элективных курсов, дополнительного образования».

## Изучение химии в основной школе направлено на достижение следующих целей:

освоение важнейших знаний об основных понятиях и законах химии, химической символике;

овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций;

развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями;

воспитание отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;

применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

#### Задачи:

Сформировать знание основных понятий и законов химии

Подготовить к сознательному выбору профессии в соответствии с личными способностями и потребностями общества.

Формировать умения: обращаться с химическими веществами, простейшими приборами, оборудованием, соблюдать правила техники безопасности, фиксировать результаты опытов, делать обобщения.

Учить наблюдать, применять полученные знания на практике.

### Программа ориентирована на использование УМК:

- 1. Химия 8 класс: учеб. для общеобразоват. учреждений / О.С. Габриэлян. М.: Дрофа
- 2. Химия. Настольная книга учителя. 8 класс: методическое пособие / О.С. Габриелян, Н.П. Воскобойникова, А.В. Яшукова. 3-изд., перераб. М.: Дрофа, 2011. 398 с.
- 3. Химия 9 класс: учеб. для общеобразоват. учреждений / О.С. Габриэлян. 14-е изд., испр. М.: Дрофа.
- 4. Химия. Настольная книга учителя. 9 класс: методическое пособие / О.С. Габриелян, И.Г. Остроумов. 3-изд., перераб. М.: Дрофа, 2007. 350 с.
- 5. Габриелян О.С., Воскобойникова Н.П. Химия в тестах, задачах, упражнениях. 8 9 кл. М.: Дрофа, 2003. Контрольно-измерительные материалы. Химия: 9 кл. 112с. /сост. Н.П. Троегубова. М.: ВАКО, 2011 г

Программа рассчитана на 136 учебных часов, в том числе 7 контрольных работ, 1 проверочная, 10 практических работ.

## Планируемые предметные результаты освоения учебного предмета «химия»

#### Личностные:

- в ценностно-ориентационной сфере чувство гордости за российскую химическую науку, гуманизм, отношение к труду, целеустремленность;
- формирование ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей;
- в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- формирование основ экологической культуры, соответствующей современному уровню экологического мышления, развитие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях;

### Метапредметные:

## Регулятивные УУД:

- умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
- умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

### Познавательные УУД:

• умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и

критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;

- умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей; планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью; Коммуникативные УУД:
- умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формулировать, аргументировать и отстаивать своё мнение.
- формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации.

Предметные:

- 1.В познавательной сфере:
- давать определения изученных понятий: «химический элемент», «атом», «ион», «молекула», «простые и сложные вещества», «вещество», «химическая формула», «относительная атомная масса», «относительная молекулярная масса», «валентность», «степень окисления», «кристаллическая решетка», «оксиды», «кислоты», «основания», «соли», «амфотерность», «индикатор», «периодический закон», «периодическая таблица», «изотопы», «химическая связь», «электроотрицательность», «химическая реакция», «химическое уравнение», «генетическая связь», «окисление», «восстановление», «электролитическая диссоциация», «скорость химической реакции»;
- описать демонстрационные и самостоятельно проведенные химические эксперименты;
- описывать и различать изученные классы неорганических соединений, простые и сложные вещества, химические реакции;

## Содержание учебного предмета (136 час) 8 класс

Введение (5 часов).

Химия — наука о веществах, их свойствах и превращениях.

Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных веществах.

Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека. Хемофилия и хемофобия.

Краткие сведения из истории возникновения и развития химии. Период алхимии. Понятие о философском камне. Химия в XVI в. Развитие химии на

Руси. Роль отечественных ученых в становлении химической науки — работы М. В. Ломоносова, А. М. Бутлерова, Д. И. Менделеева.

Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Расчет массовой доли химического элемента по формуле вещества.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы (главная и побочная). Периодическая система как справочное пособие для получения сведений о химических элементах.

**Расчетные задачи.** 1. Нахождение относительной молекулярной массы вещества по его химической формуле. 2. Вычисление массовой доли химического элемента в веществе по его формуле.

**Практическая работа№1.** Знакомство с лабораторным оборудованием. Правила техники безопасности при работе в химическом кабинете.

# **TEMA 1. Атомы химических элементов** (11 часов).

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны и нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома — образование новых химических элементов.

Изменение числа нейтронов в ядре атома — образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента.

Электроны. Строение электронных оболочек атомов химических элементов № 1—20 периодической системы Д. И. Менделеева. Понятие о завершенном и незавершенном электронном слое (энергетическом уровне).

Периодическая система химических элементов Д. И. Менделеева и строение атомов: физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента — образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах.

Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи.

Взаимодействие атомов химических элементов-неметаллов между собой — образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь. Электронные и структурные формулы.

Взаимодействие атомов химических элементов-неметаллов между собой — образование бинарных соединений неметаллов. Электроотрицательность. Понятие о ковалентной полярной связи.

Взаимодействие атомов химических элементов-металлов между собой — образование металлических кристаллов. Понятие о металлической связи.

**Демонстрации.** Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева.

# **ТЕМА 2. Простые вещества** (7 часов).

Положение металлов и неметаллов в периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества — металлы: железо, алюминий, кальций, магний, натрий, калий. Общие физические свойства металлов.

Важнейшие простые вещества — неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Способность атомов химических элементов к образованию нескольких простых веществ — аллотропия. Аллотропные модификации кислорода, фосфора, серы, углерода и олова. Металлические и неметаллические свойства простых веществ. Относительность деления простых веществ на металлы и неметаллы.

Постоянная Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы количества вещества — миллимоль и киломоль, миллимолярная и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

**Расчетные задачи.** 1. Вычисление молярной массы веществ по химическим формулам. 2. Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», « постоянная Авогадро ».

**Демонстрации.** Получение озона. Образцы белого и серого олова, белого и красного фосфора. Некоторые металлы и неметаллы количеством вещества 1 моль. Модель молярного объема газообразных веществ.

# **TEMA 3** Соединения химических элементов (13 часов).

Определение Степень окисления. степени окисления элементов формуле соединения. Составление формул бинарных химической соединений, общий способ их называния. Бинарные соединения: оксиды, хлориды, сульфиды и др. Составление их формул. Представители оксидов: вода, углекислый газ и негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде. Таблица растворимости гидроксидов и солей в воде. Представители щелочей:

гидроксиды натрия, калия и кальция. Понятие о качественных реакциях. Индикаторы. Изменение окраски индикаторов в щелочной среде.

Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная и азотная. Изменение окраски индикаторов в кислотной среде.

Соли как производные кислот и оснований. Их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Межмолекулярные взаимодействия. Типы кристаллических решеток: ионная, атомная, молекулярная и металлическая. Зависимость свойств веществ от типов кристаллических решеток.

Вещества молекулярного и немолекулярного строения.

Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доли компонента смеси. Расчеты, связанные с использованием понятия «доля».

**Расчетные задачи.** 1. Расчет массовой и объемной долей компонентов смеси веществ. 2. Вычисление массовой доли вещества в растворе по известной массе растворенного вещества и массе растворителя. 3. Вычисление массы растворяемого вещества и растворителя, необходимых для приготовления определенной массы раствора с известной массовой долей растворенного вещества.

**Демонстрации.** Образцы оксидов, кислот, оснований и солей. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV). Взрыв смеси водорода с воздухом. Способы разделения смесей. Дистилляция воды.

**Лабораторные опыты. 1.** Знакомство с образцами веществ разных классов. 2. Разделение смесей.

**Практическая работа №2**. Приготовление раствора с заданной массовой долей растворённого вещества.

# **TEMA 4** Изменения, происходящие с веществами (12 часов).

Понятие явлений как изменений, происходящих с веществами. Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, — физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, центрифугирование.

Явления, связанные с изменением состава вещества, — химические реакции. Признаки и условия протекания химических реакций. Понятие об экзо- и эндотермических реакциях. Реакции горения как частный случай экзотермических реакций, протекающих с выделением света.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества вещества, массы или объема продукта реакции по количеству вещества, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Типы химических реакций. Реакции разложения. Реакции соединения. Реакции замещения. Электрохимический ряд напряжений металлов, его использование для вещества и растворителя, необходимых для приготовления определенной массы раствора с известной массовой долей растворенного вещества. прогнозирования возможности протекания реакций между металлами и растворами кислот. Реакции вытеснения одних металлов из растворов их солей другими металлами.

Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца (признаки химических реакций).

Типы химических реакций (по признаку «число и состав исходных веществ и продуктов реакции») на примере свойств воды. Реакция разложения — электролиз воды. Реакции соединения — взаимодействие воды с оксидами металлов и неметаллов. Понятие «гидроксиды». Реакции замещения — взаимодействие воды с щелочными и щелочноземельными металлами. Реакции обмена (на примере гидролиза сульфида алюминия и карбида кальция).

**Расчетные задачи.** 1. Вычисление по химическим уравнениям массы или количества вещества по известной массе или количеству вещества одного из вступающих в реакцию веществ или продуктов реакции.

- 2. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса исходного вещества, содержащего определенную долю примесей.
- 3. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса раствора и массовая доля растворенного вещества.

Демонстрации. Примеры физических явлений: а) плавление парафина; б) возгонка иода или бензойной кислоты; в) растворение перманганата калия; г) диффузия душистых веществ с горящей лампочки накаливания. Примеры химических явлений: а) горение магния, фосфора; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II); г) растворение полученного гидроксида в кислотах; д) взаимодействие оксида меди (II) с серной кислотой при нагревании; е) разложение перманганата калия; ж) взаимодействие разбавленных кислот с металлами; з) разложение пероксида водорода; и) электролиз воды.

**Лабораторные опыты.** 3. Окисление меди в пламени спиртовки или горелки. 4. Помутнение известковой воды от выдыхаемого углекислого газа. 5. Получение углекислого газа взаимодействием соды и кислоты. 6. Замещение меди в растворе хлорида меди (II) железом.

Практическая работа №3. Очистка загрязнённой поваренной соли.

### Растворение. Растворы. Свойства растворов электролитов (21 ч).

Растворение как физико-химический процесс. Понятие о гидратах и кристаллогидратах. Растворимость. Кривые растворимости как модель зависимости растворимости твердых веществ от температуры. Насыщенные, ненасыщенные и пересыщенные растворы. Значение растворов для природы и сельского хозяйства.

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциации электролитов с различным типом химической связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Условия протекания реакции обмена между электролитами до конца в свете ионных представлений.

Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями — реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с кислотами, кислотными оксидами и солями. Использование таблицы растворимости для характеристики химических свойств оснований. Разложение нерастворимых оснований при нагревании.

Соли, их классификация и диссоциация различных типов солей. Свойства солей в свете теории электролитической диссоциации. Взаимодействие солей с металлами, условия протекания этих реакций. Взаимодействие солей с кислотами, основаниями и солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и химических свойствах. Генетические ряды металлов и неметаллов. Генетическая связь между классами неорганических веществ.

Окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление.

Реакции ионного обмена и окислительно-восстановительные реакции. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ — металлов и неметаллов, кислот и солей в свете представлений об окислительно-восстановительных процессах.

**Демонстрации.** Испытание веществ и их растворов на электропроводность. Движение окрашенных ионов в электрическом поле. Зависимость электропроводности уксусной кислоты от концентрации. Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II). Горение магния. Взаимодействие хлорной и сероводородной воды.

### Лабораторные опыты.

- 7. Реакции, характерные для растворов кислот (соляной или серной).
- 8. Реакции, характерные для растворов щелочей (гидроксидов натрия или калия).
- 9. Получение и свойства нерастворимого основания, например, гидроксида меди (II).
- 10. Реакции, характерные для растворов солей (например, для хлорида меди (II).
- 11. Реакции, характерные для основных оксидов (например, для оксида кальция).
- 12. Реакции, характерные для кислотных оксидов (например, для углекислого газа).

### Обобщение и повторение знаний – 1 час.

#### 9 класс

# Повторение основных вопросов курса 8 класса и введение в курс 9 класса (64)

Характеристика элемента по его положению в периодической системе химических элементов Д. И. Менделеева. Свойства оксидов, кислот, оснований и солей в свете теории электролитической диссоциации и процессов окисления-восстановления. Генетические ряды металла и неметалла.

Понятие о переходных элементах. Амфотерность. Генетический ряд переходного элемента.

Периодический закон и периодическая система химических элементов Д. И. Менделеева в свете учения о строении атома. Их значение.

**Лабораторный опыт.** 1. Получение гидроксида цинка и исследование его свойств.

## **Тема 1.** Металлы (17 ч)

Положение металлов в периодической системе химических элементов Д. И. Менделеева. Металлическая кристаллическая решетка и металлическая химическая связь. Общие физические свойства металлов. Сплавы, их свойства и значение. Химические свойства металлов как восстановителей. Электрохимический ряд напряжений металлов и его использование для характеристики химических свойств конкретных металлов. Способы получения металлов: пиро-, гидро- и электрометаллургия. Коррозия металлов и способы борьбы с ней.

Общая характеристика щелочных металлов. Металлы в природе. Общие способы их получения. Строение атомов. Щелочные металлы простые вещества, их физические и химические свойства. Важнейшие соединения щелочных металлов — оксиды,

гидроксиды и соли (хлориды, карбонаты, сульфаты, нитраты), их свойства и применение в народном хозяйстве. Калийные удобрения.

Общая характеристика элементов главной подгруппы II группы. Строение атомов. Щелочноземельные металлы - простые вещества, их физические и химические свойства. Важнейшие соединения щелочноземельных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, нитраты, сульфаты и фосфаты), их свойства и применение в народном хозяйстве.

#### Алюминий.

Строение атома, физические и химические свойства простого вещества. Соединения алюминия оксид и гидроксид, их амфотерный характер. Важнейшие соли алюминия. Применение алюминия и его соединений.

Железо.

Строение атома, физические и химические свойства простого вещества. Генетические ряды  $Fe^{2+}$  и  $Fe^{3+}$ . Качественные реакции на  $Fe^{2+}$  и  $Fe^{3+}$ . Важнейшие соли железа. Значение железа, его соединений и сплавов в природе и народном хозяйстве.

**Демонстрации.** Образцы щелочных и щелочноземельных металлов. Образцы сплавов. Взаимодействие натрия с водой. Взаимодействие натрия и магния с кислородом. Взаимодействие металлов с неметаллами. Получение гкдроксидов железа (II) и (III).

**Лабораторные опыты.** 2. Ознакомление с образцами металлов. 3. Взаимодействие металлов с растворами кислот и солей. 4. Ознакомление с образцами природных соединений: а) натрия; б) кальция; в) алюминия; г) железа.

5. Получение гидроксида алюминия и его взаимодействие с растворами кислот и щелочей. 6. Качественные реакции на ионы  $Fe^{2+}$  и  $Fe^{3+}$ .

## **Практическая работа №1.** Решение экспериментальных задач. Тема *«Металлы»*.

### **Тема 2. Неметаллы** (26 ч)

Общая характеристика неметаллов: положение в периодической системе Д. И. Менделеева, особенности строения атомов, электроотрицательность как мера «неметалличности», ряд электроотрицательности. Кристаллическое строение неметаллов - простых веществ. Аллотропия. Физические свойства неметаллов. Относительность понятий «металл», «неметалл».

#### Водород.

Положение в периодической системе химических элементов Д. И. Менделеева. Строение атома и молекулы. Физические и химические свойства водорода, его получение и применение.

Общая характеристика галогенов.

Строение атомов. Простые вещества, их физические и химические свойства. Основные соединения галогенов (галогеноводороды и галогениды) их свойства. Качественная реакция на хлорид-ион Краткие сведения о хлоре,

броме, фторе и йоде. Применение галогенов и их соединений в народном хозяйстве.

### Cepa.

Строение атома, аллотропия, свойства и применение ромбической серы. Оксиды серы (П) и (VI), их получение, свойства и применение Сероводородная и сернистая кислоты. Серная кислота и ее соли, их применение в народно хозяйстве. Качественная реакция на сульфат-ион.

### Азот.

Строение атома и молекулы, свойства простого вещества. Аммиак, строение, свойства, получение и применение. Соли аммония, их свойств и применение. Оксиды азота (П) и (IV). Азотная кислота, ее свойства и применение. Нитраты и нитриты, проблема их содержания в сельскохозяйственной продукции. Азотные удобрения.

### Фосфор.

Строение атома, аллотропия, свойства белого и красного фосфора, их применение. Основные соединения: оксид фосфора (V), ортофосфорная кислота и фосфаты. Фосфорные удобрения.

### Углерод.

Строение атома, аллотропия, свойства аллотропных модификаций, применение. Оксиды углерода (II) и (IV), их свойства и применение. Качественная реакция на углекислый газ. Карбонаты: кальцит, сода, поташ, их значение в природе и жизни человека. Качественная реакция на карбонатион.

### Кремний.

Строение атома, кристаллический кремний, его свойства и применение. Оксид кремния (IV), его природные разновидности. Силикаты. Значение соединений кремния в живой и неживой природе. Понятие о силикатной промышленности.

**Демонстрации.** Образцы галогенов - простых веществ. Вытеснение хлором брома или иода из растворов их солей. Взаимодействие серы с металлами, водородом и кислородом.

Взаимодействие концентрированной азотной кислоты с медью.

Поглощение углем растворенных веществ или газов. Восстановление меди из ее оксида углем. Образцы природных соединений хлора, серы, фосфора, углерода, кремния. Образцы важнейших для народного хозяйства сульфатов, нитратов, карбонатов, фосфатов. Образцы стекла, керамики, цемента.

**Лабораторные опыты.** 7. Качественная реакция на хлорид-ион. 8. Качественная реакция на сульфат-ион. 9. Распознавание солей аммония. 10. Получение углекислого газа и его распознавание. 11. Качественная реакция на карбонат-ион. 12. Ознакомление с природными силикатами. 13. Ознакомление с продукцией силикатной промышленности.

**Практическая работа №2.** Получение, собирание и распознавание углекислого газа.

**Практическая работа №3.** Решение экспериментальных задач по теме «Получение соединений неметаллов и изучение их свойств».

## Тема 3. Органические соединения (15 ч)

Вещества органические и неорганические, относительность понятия «органические вещества». Причины многообразия органических соединений. Химическое строение органических соединений. Молекулярные и структурные формулы органических веществ.

Метан и этан: строение молекул. Горение метана и этана. Дегидрирование этана. Применение метана.

Химическое строение молекулы этилена. Двойная связь. Взаимодействие этилена с водой. Реакции полимеризации этилена. Полиэтилен и его значение.

Понятие о предельных одноатомных спиртах на примерах метанола и этанола. Трехатомный спирт - глицерин.

Понятие об альдегидах на примере уксусного альдегида. Окисление альдегида в кислоту.

Одноосновные предельные карбоновые кислоты на примере уксусной кислоты. Стеариновая кислота как представитель жирных карбоновых кислот.

Реакции этерификации и понятие о сложных эфирах. Жиры как сложные эфиры глицерина и жирных кислот.

Понятие об аминокислотах и белки, их строение и биологическая роль.

Понятие об углеводах. Глюкоза, крахмал и целлюлоза (в сравнении), их биологическая роль.

**Демонстрации.** Модели молекул метана и других углеводородов. Образцы этанола и глицерина. Качественная реакция на многоатомные спирты. Получение уксусно-этилового эфира. Омыление жира. Качественная реакция на крахмал. Доказательство наличия функциональных групп в растворах аминокислот. Цветные реакции белков.

Лабораторные опыты. 14. Изготовление моделей молекул углеводородов.

- 15. Свойства глицерина. 16. Взаимодействие глюкозы с гидроксидом меди
- (II) без нагревания и при нагревании. 17. Взаимодействие крахмала с иодом.

Практическая работа №4. Изготовление моделей углеводородов.

**Практическая работа №5.** Знакомство с образцами лекарственных препаратов.

**Практическая работа №6.** Знакомство с образцами хим. средств санитарии и гигиены.

## Тема 4. Обобщение знаний по химии за курс основной школы (4 ч)

Физический смысл порядкового номера элемента в периодической системе химических элементов Д. И. Менделеева, номеров периода и группы. Закономерности изменения свойств элементов и их соединений в периодах и

группах в свете представлений о строении атомов элементов. Значение периодического закона.

Типы химических связей и типы кристаллических решеток. Взаимосвязь строения и свойств веществ.

Классификация химических реакций по различным признакам (число и состав реагирующих и образующихся веществ; тепловой эффект; использование катализатора; направление; изменение степеней окисления атомов).

Простые и сложные вещества. Металлы и неметаллы. Генетические ряды металла, неметалла и переходного металла. Оксиды (основные, амфотерные и кислотные), гидроксиды (основания, амфотерные гидроксиды и кислоты) и соли: состав, классификация и общие химические свойства в свете теории электролитической диссоциации и представлений о процессах окислениявосстановления.

### Тематическое планирование.

#### 8 класс

| o luiuce  |                                                                |            |
|-----------|----------------------------------------------------------------|------------|
| №         | Тема                                                           | Количество |
| $\Pi/\Pi$ |                                                                | часов.     |
| 1         | Введение (5час)                                                | 5          |
| 2         | Атомы химических элементов (11 час.)                           | 11         |
| 3         | Простые вещества (7 час)                                       | 7          |
| 4         | Соединения химических элементов (13 час.)                      | 13         |
| 5         | Изменения, происходящие с веществами (12 час.)                 | 12         |
| 6         | Растворение. Растворы. Свойства растворов электролитов (21 ч.) | 20         |
| Итого     |                                                                | 68         |

#### 9 класс

| №         | Тема                                                                        | Количество |
|-----------|-----------------------------------------------------------------------------|------------|
| $\Pi/\Pi$ |                                                                             | часов.     |
| 1         | Повторение основных вопросов курса 8 класса и введение в курс 9 класса (6ч) | 6          |
| 2         | Металлы <i>(17 ч)</i>                                                       | 17         |
| 3         | Неметаллы <i>(26 ч)</i>                                                     | 26         |
| 4         | Органические соединения (15 ч)                                              | 15         |
| 5         | Обобщение знаний по химии за курс основной школы (4 ч)                      | 4          |
| Итог      | 0                                                                           | 68         |