Муниципальное бюджетное общеобразовательное учреждение «Шаховская средняя общеобразовательная школа»

Рассмотрено

на заседании педагогического

Протокол № /

OT WAS & OBSERVE 20 PT.

Согласовано

Заместитель директора

МБОУ «Шаховская СОШ»

/С. Рязанова / «Д» <u>ивини</u> 20 г.

Утверждено Директор ОУС

МБОУ «Наховская СОШ»

О. Светпичный/
Приказ № от « В именута

20// г.

Рабочая программа по учебному предмету «БИОЛОГИЯ»

для обучения на уровне среднего общего образования (базовый уровень)

Учителя биологии Гриневой Галины Александровны

Пояснительная записка.

Программа составлена на основе

- -Федерального закона от 29.12.2012 г. №273- ФЗ (ред. от 05.05.2014) «Об образовании в Российской Федерации»
- Инструктивно-методическое письмо «О преподавании предмета «Биология» в общеобразовательных организациях Белгородской области
- Примерной программы среднего (полного) общего образования Профильный уровень (Сборник нормативных документов. Биология. Федеральный компонент государственного стандарта. Примерные программы по биологии).
- Программы среднего общего образования по биологии для 10-11 классов. Профильный уровень (автор В.Б. Захарова)
- В рабочей программе нашли отражение **цели и задачи** изучения биологии на ступени среднего (полного) общего образования, изложенные в пояснительной записке к Примерной программе по биологии (профильный уровень):
- освоение системы биологических знаний: основных биологических теорий, идей и принципов, лежащих в основе современной научной картины мира; о строении, многообразии и особенностях биосистем (клетка, организм, популяция, вид, биогеоценоз, биосфера); о выдающихся биологических открытиях и современных исследованиях в биологической науке;
- ознакомление с методами познания природы: исследовательскими методами биологических наук (цитологии, генетики, селекции, биотехнологии, экологии); методами самостоятельного проведения биологических исследований (наблюдения, измерение, эксперимент, моделирование) и грамотного оформления полученных результатов; взаимосвязью развития методов и теоретических обобщений в биологической науке;
- овладение умениями: самостоятельно находить, анализировать и использовать биологическую информацию; пользоваться биологической терминологией и символикой; устанавливать связь между развитием биологии и социально-экономическими и экологическими проблемами человечества; оценивать последствия своей деятельности по отношению к окружающей среде, собственному здоровью; обосновывать и соблюдать меры профилактики заболеваний и ВИЧ-инфекции, правила поведения в природе и обеспечения безопасности собственной жизнедеятельности в чрезвычайных ситуациях природного и техногенного характера; характеризовать современные научные открытия в области биологии;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе: знакомства с выдающимися открытиями и современными исследованиями в биологической науке, решаемыми ею проблемами, методологией биологического исследования; проведения экспериментальных исследований, решения биологических задач, моделирования биологических объектов и процессов;
- воспитание: убежденности в познаваемости живой природы, сложности и самоценности жизни как основы общечеловеческих нравственных ценностей и рационального природопользования;

Программа ориентирована на использование УМК:

Учебник: Биология. Общая биология. Профильный уровень. 10-11 класс: учебник для общеобраз. учреждений. В.Б. Захаров, С.Г.Мамонтов, Н.И. Сонин, Е.Т Захарова. М.: Дрофа.

Планируемые результаты изучения учебного предмета «Биология»

Результаты обучения на профильном уровне направлены на реализацию деятельностного, практико-ориентированного и личностно-ориентированного подходов: овладение содержанием, значимым для продолжения образования в сфере биологических наук, освоение учащимися интеллектуальной и практической деятельности; овладение биологическими методами исследований. Для реализации указанных подходов, включенные в рабочую программу требования к уровню подготовки сформулированы в деятельностной форме. Приоритетами для учебного предмета «Биология» на ступени среднего (полного) общего образования на профильном уровне являются умения, основанные на более сложных видах деятельности, в том числе творческой: объяснять, устанавливать взаимосвязи, решать задачи, составлять схемы, описывать, выявлять, исследовать, сравнивать, анализировать и оценивать, осуществлять самостоятельный поиск биологической информации,использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- грамотного оформления результатов биологических исследований;
- обоснования и соблюдения правил поведения в окружающей среде, мер профилактики распространения вирусных (в том числе ВИЧ-инфекции) и других заболеваний, стрессов, вредных привычек (курение, алкоголизм, наркомания);
- оказания первой помощи при простудных и других заболеваниях, отравлении пищевыми продуктами; определение собственных позиций по отношению к экологическим проблемам, поведению в природной среде;
- •оценки этических аспектов некоторых исследований в области биотехнологии (клонирование, искусственное оплодотворение).

Ряд требований реализуется за счет формирования более конкретных умений:

- выделять объект биологического исследования и науки, изучающие данный объект;
- определять темы курса, которые носят мировоззренческий характер;
- отличать научные методы, используемые в биологии;
- определять место биологии в системе естественных наук.
- доказывать, что организм единое целое;
- объяснять значение для развития биологических наук выделения уровней организации живой природы;
- обосновывать единство органического мира;
- выдвигать гипотезы и осуществлять их проверку;
- отличать теорию от гипотезы.

Содержание учебного предмета.

РАЗДЕЛ 1.

Введение в биологию.

Тема 1.1.

Предмет и задачи общей биологии.

Уровни организации живой материи.

Биология как наука; предмет и методы изучения в биологии. Общая биология — учебная дисциплина об основных закономерностях возникновения, развития и поддержания жизни на Земле. Общая биология как один из источников формирования диалектикоматериалистического мировоззрения. Общебиологические закономерности — основа рационального природопользования, сохранения окружающей среды, интенсификации сельскохозяйственного производства и сохранения здоровья человека.

Связь биологических дисциплин с другими науками (химией, физикой, географией, астрономией, историей и др.). Роль биологии в формировании научных представлений о мире.

Жизнь как форма существования материи; определение понятия «жизнь». Жизнь и живое вещество; косное, биокосное и биогенное вещество биосферы. Уровни организации живой материи и принципы их выделения; молекулярный, субклеточный, клеточный, тканевый и органный, организменный, популяционно-видовой, биоценотический и биосферный уровни организации живого.

Демонстрация. Схемы, отражающие многоуровневую организацию живого (организменный и биоценотический уровни).

Тема 1.2.

Основные свойства живого. Многообразие живого мира.

Единство химического состава живой материи; основные группы химических элементов и молекул, образующие живое вещество биосферы. Клеточное строение организмов, населяющих Землю. Обмен веществ (метаболизм) и саморегуляция в биологических системах; понятие о гомеостазе как об обязательном условии существования живых систем. Самовоспроизведение; наследственность и изменчивость как основа существования живой материи, их проявления на различных уровнях организации живого. Рост и развитие. Раздражимость; формы избирательной реакции организмов на внешние воздействия (безусловные и условные рефлексы; таксисы, тропизмы и настии). Ритмичность процессов жизнедеятельности; биологические ритмы и их адаптивное значение. Дискретность живого вещества и взаимоотношение части и целого в биосистемах. Энергозависимость живых организмов; формы потребления энергии.

Царства живой природы; естественная классификация живых организмов. Видовое разнообразие крупных систематических групп и основные принципы организации животных, растений, грибов и микроорганизмов.

Демонстрация. Схемы, отражающие структуру царств живой природы, многообразие живых организмов. Схемы и таблицы, характеризующие строение и распространение в биосфере растений, животных, грибов и микроорганизмов.

Основные понятия. Биология. Жизнь. Основные отличия живых организмов от объектов неживой природы. Уровни организации живой материи. Объекты и методы изучения в биологии. Многообразие живого мира; царства живой природы, естественная система классификации живых организмов.

Неорганические и органические молекулы и вещества; клетка, ткань, орган, системы органов. Понятие о целостном организме. Вид и популяция (общие представления). Биогеоценоз. Биосфера.

Умения. Объяснять основные свойства живых организмов, в том числе этапы метаболизма, саморегуляцию; понятие гомеостаза и другие особенности живых систем различного иерархического уровня как результат эволюции живой материи. Характеризовать структуру царств живой природы, объяснять принципы классификации живых организмов.

Межпредметные связи. Ботаника. Основные группы растений; принципы организации растительных организмов, грибов и микроорганизмов.

Зоология. Основные группы животных; отличия животных и растительных организмов.

Неорганическая химия. Кислород, водород, углерод, азот, сера, фосфор и другие элементы периодической системы Д. И. Менделеева, их основные свойства.

Органическая химия. Основные группы органических соединений; биологические полимеры — белки, жиры и нуклеиновые кислоты, углеводы.

РАЗДЕЛ 2.

Происхождение и начальные этапы развития жизни на Земле. (18 часов)

Тема 2.1.

История представлений о возникновении жизни на Земле. (4 часа)

Мифологические представления. Первые научные попытки объяснения сущности и процесса возникновения жизни. Опыты Ф. Реди, взгляды В. Гарвея, эксперименты Л. Пастера. Теории вечности жизни. Материалистические представления о возникновении жизни на Земле.

Демонстрация. Схема экспериментов Л. Пастера.

Тема 2.2.

Предпосылки возникновения жизни на Земле. (6 часов)

Предпосылки возникновения жизни на Земле: космические и планетарные предпосылки; химические предпосылки эволюции материи в направлении возникновения органических молекул: первичная атмосфера и эволюция химических элементов, неорганических и органических молекул на ранних этапах развития Земли.

Тема 2.3.

Современные представления о возникновении жизни на Земле. (8 часов)

Современные представления о возникновении жизни; теория А. И. Опарина, опыты С. Миллера. Теории происхождения протобиополимеров. Свойства коацерватов: реакции обмена веществ, самовоспроизведение. Эволюция протобионтов: формирование внутренней среды, появление катализаторов органической природы, возникновение генетического кода. Значение работ С. Фокса и Дж. Бернала. Гипотезы возникновения генетического кода. Начальные этапы биологической эволюции: возникновение фотосинтеза, эукариот, полового процесса и многоклеточности.

Демонстрация. Схемы возникновения одноклеточных эукариот, многоклеточных организмов, развития царств растений и животных, представленных в учебнике.

Основные понятия. Теория академика А. И. Опарина о происхождении жизни на Земле. Химическая эволюция. Небиологический синтез органических соединений. Коацерватные капли и их эволюция. Протобионты. Биологическая мембрана. Возникновение генетического кода. Безъядерные (прокариотические) клетки. Клетки, имеющие ограниченное оболочкой ядро. Клетка — элементарная структурно-функциональная елиница всего живого.

Умения. Объяснять с материалистических позиций процесс возникновения жизни на Земле как естественное событие в цепи эволюционных преобразований материи в целом.

Межпредметные связи. Неорганическая химия. Периодическая система элементов Д. И. Менделеева. Свойства растворов. Теория электролитической диссоциации.

Органическая химия. Получение и химические свойства предельных углеводородов. Физика. Ионизирующее излучение; понятие о дозе излучения и биологической защите. Астрономия. Организация планетных систем. Солнечная система, ее структура. Место планеты Земля в Солнечной системе.

РАЗДЕЛ 3.

Учение о клетке (31 час)

Тема 3.1.

Введение в цитологию. (1час)

Предмет и задачи цитологии. Методы изучения биологии: световая и электронная микроскопия; биохимические и иммунологические

методы. Два типа клеточной организации: прокариотические и эукариотические клетки.

Демонстрация. Принципиальные схемы устройства светового и электронного микроскопа. Схемы, иллюстрирующие методы препаративной биохимии и иммунологии.

Тема 3.2.

Химическая организация живого вещества (9 часов)

Элементный состав живого вещества биосферы. Распространенность элементов, их вклад в образование живой материи и объектов неживой природы. Макроэлементы, микроэлементы; их вклад в образование неорганических и органических молекул живого вещества. Неорганические молекулы живого вещества: вода; химические свойства и биологическая роль: растворитель гидрофильных молекул, среда протекания биохимических превращений; роль воды в компартментализации и межмолекулярных взаимодействиях, теплорегуляции и др. Соли неорганических кислот, их вклад в обеспечение процессов жизнедеятельности и поддержание гомеостаза. Роль катионов и анионов в обеспечении процессов жизнедеятельности. Осмос и осмотическое давление; осмотическое поступление молекул в клетку. Буферные системы клетки и организма.

Органические молекулы. Биологические полимеры — белки; структурная организация (первичная, варианты вторичной, третичная и четвертичная структурная организация молекул белка и химические связи, их образующие). Свойства белков: водорастворимость, термолабильность, поверхностный заряд и др.; денатурация (обратимая и необратимая), ренатурация; биологический смысл и практическое значение. Функции белковых молекул. Биологические катализаторы — белки, классификация, их свойства, роль белков в обеспечении процессов жизнедеятельности. Углеводы в жизни растений, животных, грибов и микроорганизмов. Структурно-функциональные особенности организации моно-и дисахаридов. Строение и биологическая роль биополимеров — полисахаридов. Жиры — основной структурный компонент клеточных мембран и источник энергии. Особенности строения жиров и липоидов, лежащие в основе их функциональной активности на уровне клетки и целостного организма. ДНК молекулы наследственности; история изучения. Уровни структурной организации; структура полинуклеотидных цепей, правило комплементар-ности {*правило Чаргаффа*¹), двойная спираль (Уотсон и Крик); биологическая роль ДНК. Генетический код, свойства кода. Редупликация ДНК, передача наследственной информации из поколения в поколение. Передача наследственной информации из ядра в цитоплазму; транскрипция. РНК, структура и функции. Информационные, транспортные, рибосомальные и регуляторные РНК. «Малые» молекулы и их роль в обменных процессах. Витамины: строение, источники поступления, функции в организме.

Определение нуклеотидных последовательностей (секвенирование) геномов растений и животных. Геном человека. Генетическая инженерия; генодиагностика и генотерапия заболеваний человека и животных.

Демонстрация. Объемные модели структурной организации биологических полимеров: белков и нуклеиновых кислот; их сравнение с моделями искусственных полимеров (поливинилхлорид и др.).

Лабораторные и практические работы

Ферментативное расщепление пероксида водорода в тканях организма.

Определение крахмала в растительных тканях.

Тема 3.3.

Строение и функции прокариотической клетки. (1час)

Царство Прокариоты (Дробянки); систематика и отдельные представители: цианобактерии, бактерии и микоплазмы. Форма и размеры прокариотических клеток. Строение цитоплазмы бактериальной клетки; локализация ферментных систем и организация метаболизма у прокариот. Генетический аппарат бактерий; особенности реализации наследственной информации. Особенности жизнедеятельности бактерий: автотрофные и гетеротрофные бактерии; аэробные и анаэробные микроорганизмы. Спорообразование и его биологическое значение. Размножение, половой процесс у бактерий; рекомбинации. Место и роль прокариот в биоценозах.

Демонстрация. Схемы строения клеток различных прокариот.

Тема 3.4.

Структурно-функциональная организация клеток эукариот (бчасов)

Цитоплазма эукариотической клетки. Мембранный принцип организации клеток; строение биологической мембраны, морфологические и функциональные особенности мембран различных клеточных структур. Органеллы цитоплазмы, их структура и функции. Наружная цитоплазматиче-ская мембрана, эндоплазматическая сеть, аппарат Гольджи, лизосомы; механизм внутриклеточного пищеварения. Митохондрии — энергетические станции-клетки; механизмы клеточного дыхания. Рибосомы и их участие в процессах трансляции. Клеточный центр. Органоиды движения: жгутики и реснички. Цитоскелет. Специальные органоиды цитоплазмы: сократительные вакуоли и др. Взаимодействие органоидов в обеспечении процессов метаболизма. Особенности строения растительных клеток; вакуоли и пластиды. Виды пластид; их структура и функциональные особенности. Клеточная стенка. Особенности строения клеток грибов. Включения, значение и роль в метаболизме клеток.

Клеточное ядро — центр управления жизнедеятельностью клетки. Структуры клеточного ядра: ядерная оболочка, хроматин (гетерохроматин и эухроматин), ядрышко. Кариоплазма; химический состав и значение для жизнедеятельности ядра. Дифференциальная активность генов; эухроматин. Хромосомы. Структура хромосом в различные периоды жизненного цикла клетки; кариотип, понятие о гомологичных хромосомах. Диплоидный и гаплоидный наборы хромосом.

Клеточные технологии. Стволовые клетки и перспективы их применения в биологии и медицине. Клонирование растений и животных.

Демонстрация. Модели клетки. Схемы строения органоидов растительной и животной клеток. Микропрепараты клеток растений, животных и одноклеточных грибов.

Лабораторные и практические работы

Изучение строения растительной и животной клеток под микроскопом.

Наблюдение за движением цитоплазмы в растительных клетках.

Тема 3.5.

Обмен веществ в клетке (метаболизм) (7 часов)

Обмен веществ и превращение энергии в клетке — основа всех проявлений ее жизнедеятельности. Каталитический характер реакций обмена веществ. Компартментализация процессов метаболизма и локализация специфических ферментов в мембранах определенных клеточных структур. Автотрофные и гетеротрофные организмы. Пластический и энергетический обмен. Реализация наследственной информации. Биологический синтез белков и других органических молекул в клетке. Транскрипция; ее сущность и механизм. Процессинг иРНК; биологический смысл и значение. Трансляция; сущность и механизм. Энергетический обмен; структура и функции АТФ. Этапы энергетического обмена. Подготовительный этап, роль лизосом; неполное (бескислородное) расщепление. Полное кислородное окисление; локализация процессов в митохондриях. Сопряжение расщепления глюкозы в клетке с распадом и синтезом АТФ. Фотосинтез; световая фаза и особенности организации тилакоидов гран, энергетическая ценность. Темновая фаза фотосинтеза; процессы темновой фазы; использование энергии. Хемосинтез. Принципы нервной и эндокринной регуляции процессов превращения веществ и энергии в клетке.

Демонстрация. Схемы путей метаболизма в клетке. Энергетический обмен на примере расщепления глюкозы. Пластический обмен: биосинтез белка и фотосинтез (моделиаппликации). Схемы, отражающие принципы регуляции метаболизма на уровне целостного организма.

Тема 3.6.

Жизненный цикл клеток. (2 часа)

Клетки в многоклеточном организме. Понятие о дифференцировке клеток многоклеточного организма. Жизненный цикл клеток. Ткани организма с разной скоростью клеточного обновления: обновляющиеся, растущие и стабильные. Размножение клеток. Митотический цикл: интерфаза — период подготовки клетки к делению, редупликация ДНК; митоз, фазы митотического деления и преобразования хромосом в них. Механизм образования веретена деления и расхождения дочерних хромосом в анафазе. Биологический смысл митоза. Биологическое значение митоза (бесполое размножение, рост, восполнение клеточных потерь в физиологических и патологических условиях). Понятие о регенерации. Нарушения интенсивности клеточного размножения и заболевания человека и животных', трофические язвы, доброкачественные и злокачественные опухоли и др.

Демонстрация. Митотическое деление клетки в корешке лука под микроскопом и на схеме. Гистологические препараты различных тканей млекопитающих. Схемы строения растительных и животных клеток различных тканей в процессе деления. Схемы путей регенерации органов и тканей у животных разных систематических групп.

Тема 3.7.

Неклеточные формы жизни. Вирусы и бактериофаги. (2часа)

Вирусы — внутриклеточные паразиты на генетическом уровне. Открытие вирусов, механизм взаимодействия вируса и клетки, инфекционный процесс. Вертикальный и горизонтальный тип передачи вирусов. Заболевания животных и растений, вызываемые вирусами. Вирусные заболевания, встречающиеся у человека; грипп, гепатит, СПИД. Бактериофаги.

Демонстрация. Модели различных вирусных частиц. Схемы взаимодействия вируса и клетки при горизонтальном и вертикальном типе передачи инфекции. Схемы, отражающие процесс развития вирусных заболеваний.

Тема 3.8.

Клеточная теория. (3 часа)

Клеточная теория строения организмов. История развития клеточной теории; работы М. Шлейдена, Т. Шванна, Р. Броуна, Р. Вирхова и других ученых. Основные положения клеточной теории; современное состояние клеточной теории строения организмов. Значение клеточной теории для развития биологии.

Демонстрация. Биографии ученых, внесших вклад в развитие клеточной теории.

Основные понятия. Органические и неорганические вещества, образующие структурные компоненты клеток. Прокариоты: бактерии и синезеленые водоросли (цианобактерии). Эукариотическая клетка, многообразие эукариот; клетки одноклеточных и многоклеточных организмов. Особенности растительной и животной клеток. Ядро и цитоплазма — главные составные части клетки. Органоиды цитоплазмы. Включения. Хромосомы, их строение. Диплоидный и гаплоидный наборы хромосом. Кариотип. Жизненный цикл клетки. Митотический цикл; митоз. Биологический смысл митоза. Биологическое значение митоза. Положения клеточной теории строения организмов.

Умения. Объяснять рисунки и схемы, представленные в учебнике. Самостоятельно составлять схемы процессов, протекающих в клетке, и локализовать отдельные их этапы в различных клеточных структурах. Иллюстрировать ответ простейшими схемами и рисунками клеточных структур. Работать с микроскопом и изготовлять простейшие препараты для микроскопического исследования.

Межпредметные связи. Неорганическая химия. Химические связи. Строение вещества. Окислительно-восстановительные реакции. Органическая химия. Принципы организации органических соединений. Углеводы, жиры, белки, нуклеиновые кислоты. Физика. Свойства жидкостей, тепловые явления. Законы термодинамики.

РАЗДЕЛ 4.

Размножение организмов. (7 часов)

TEMA 4.1.

Бесполое размножение растений и животных (2 часа)

Формы бесполого размножения: митотическое деление клеток одноклеточных; спорообразование, почкование у одноклеточных и многоклеточных организмов; вегетативное размножение. Биологический смысл и эволюционное значение бесполого размножения.

Демонстрация. Способы вегетативного размножения плодовых деревьев и овощных культур. Схемы и рисунки, показывающие почкование дрожжевых грибов и кишечнополостных.

Тема 4.2.

Половое размножение (5 часов)

Половое размножение растений и животных. Половая система, органы полового размножения млекопитающих. Гаметогенез. Периоды образования половых клеток: размножение и рост. Период созревания (мейоз); профаза I и процессы, в ней происходящие: конъюгация, кроссинговер. Механизм, генетические последствия и биологический смысл кроссинговера. Биологическое значение и биологический смысл мейоза. Период формирования половых клеток; сущность и особенности течения. Особенности сперматогенеза и овогенеза. Осеменение и оплодотворение. Моно- и полиспермия; биологическое значение. Наружное и внутреннее оплодотворение.

Партеногенез. Развитие половых клеток у высших растений; двойное оплодотворение. Эволюционное значение полового размножения.

Демонстрация. Микропрепараты яйцеклеток. Схема строения сперматозоидов различных животных. Схемы и рисунки, представляющие разнообразие потомства у одной пары родителей.

Основные понятия. Многообразие форм и распространенность бесполого размножения. Биологическое значение бесполого размножения. Половое размножение и его биологическое значение. Органы половой системы; принципы их строения и гигиена. Гаметогенез; мейоз и его биологическое значение. Осеменение и оплодотворение.

Умения. Объяснять процесс мейоза и другие этапы образования половых клеток, используя схемы и рисунки из учебника. Характеризовать сущность бесполого и полового размножения.

Межпредметные связи. Неорганическая химия. Защита природы от воздействия отходов химических производств.

Физика. Электромагнитное поле. Ионизирующее излучение, понятие о дозе излучения и биологической защите.

РАЗДЕЛ 5.

Индивидуальное развитие организмов. (13 часов)

Тема 5.1. Эмбриональное развитие животных (6 часов)

Типы яйцеклеток; полярность, распределение желтка и генетических детерминант. Оболочки яйца; активация оплодотворенных яйцеклеток к развитию. Основные закономерности дробления; образование однослойного зародыша — бластулы. Гаструляция; закономерности образования двуслойного зародыша — гаструлы. Зародышевые листки и их дальнейшая дифференцировка. Первичный органогенез (нейруляция) и дальнейшая дифференцировка тканей, органов и систем. Регуляция эмбрионального развития; детерминация и эмбриональная индукция. Роль нервной и эндокринной систем в обеспечении эмбрионального развития организмов. Управление размножением растений и животных. Искусственное осеменение, осеменение in vitro, пересадка зародышей. Клонирование растений и животных; перспективы создания тканей и органов человека.

Демонстрация. Сравнительный анализ зародышей позвоночных на разных этапах эмбрионального развития. Модели эмбрионов ланцетника, лягушек или других животных. Таблицы, иллюстрирующие бесполое и половое размножение.

Тема 5.2.

Постэмбриональное развитие животных. (2 часа)

Закономерности постэмбрионального периода развития. Непрямое развитие; полный и неполный метаморфоз. Биологический смысл развития с метаморфозом. Стадии постэмбрионального развития (личинка, куколка, имаго). Прямое развитие: дорепродуктивный, репродуктивный и пострепродуктивный периоды. Старение и смерть; биология продолжительности жизни.

Демонстрация. Таблицы, иллюстрирующие процесс метаморфоза у членистоногих и позвоночных (жесткокрылые и чешуйчатокрылые, амфибии).

Тема 5.3.

Онтогенез высших растений. (1 час)

Биологическое значение двойного оплодотворения. Эмбриональное развитие; деление зиготы, образование тканей и органов зародыша. Постэмбриональное развитие. Прорастание семян, дифференцировка органов и тканей, формирование побеговой и корневой систем. Регуляция развития растений; фитогормоны.

Демонстрация. Схемы эмбрионального и постэмбрионального развития высших растений.

Тема 5.4.

Общие закономерности онтогенеза. (1 час)

Сходство зародышей и эмбриональная дивергенция признаков (закон К. Бэра). Биогенетический закон (Э. Геккель и К. Мюллер). Работы академика А. Н. Северцова, посвященные эмбриональной изменчивости (изменчивость всех стадий онтогенеза; консервативность ранних стадий эмбрионального развития; возникновение изменений как преобразование стадий развития и полное выпадение предковых признаков).

■ Демонстрация. Таблица, отражающая сходство зародышей позвоночных животных. Схемы' преобразования органов и тканей в филогенезе.

Тема 5.5. Развитие организма и окружающая среда. (3 часа)

Роль факторов окружающей среды в эмбриональном и постэмбриональном развитии организма. Критические периоды развития. Влияние изменений гомеостаза организма матери и плода в результате воздействия токсичных веществ (табачного дыма, алкоголя, наркотиков и т. д.) на ход эмбрионального и постэмбрионального периодов развития (врожденные уродства).

Понятие о регенерации; внутриклеточная, клеточная, тканевая и органная регенерация. Эволюция способности к регенерации у позвоночных животных.

Демонстрация. Фотографии, отражающие последствия воздействий факторов среды на развитие организмов. Схемы и статистические таблицы, демонстрирующие последствия употребления алкоголя, наркотиков и табака на характер развития признаков и свойств у потомства.

Основные понятия. Этапы эмбрионального развития растений и животных. Периоды постэмбрионального развития. Биологическая продолжительность жизни. Влияние вредных воздействий курения, употребления наркотиков, алкоголя, загрязнения окружающей среды на развитие организма и продолжительность жизни

Умения. Объяснять процесс развития живых организмов как результат постепенной реализации наследственной информации. Различать и охарактеризовывать различные периоды онтогенеза и указывать факторы, неблагоприятно влияющие на каждый из этапов развития.

Межпредметные связи. Неорганическая химия. Защита природы от воздействия отходов химических производств.

Физика. Электромагнитное поле. Ионизирующее излучение, понятие о дозе излучения и биологической защите

РАЗДЕЛ 6.

Основы генетики и селекции. (30 часов)

Тема 6.1.

История представлений о наследственности и изменчивости. (2 часа)

Представления древних о родстве и характере передачи признаков из поколения в поколение. Взгляды средневековых ученых на процессы наследования признаков. История развития генетики. Основные понятия генетики. Признаки и свойства; гены, аллельные гены. Гомозиготные и гетерозиготные организмы. Генотип и фенотип организма; генофонд.

Демонстрация. Биографии виднейших генетиков.

Тема 6.2.

Основные закономерности наследственности. (14 часов)

Молекулярная структура гена. Гены структурные и регуляторные. Подвижные генетические элементы. Регуляция экспрессии генов на уровне транскрипции, процессинга и-РНК и трансляции. Хромосомная (ядерная) и нехромосомная (цитоплазматическая) наследственность. Связь между генами и признаками.

Закономерности наследования признаков, выявленные Г. Менделем. Гибридологический метод изучения наследственности. Моногибридное скрещивание. Первый закон Менделя — закон доминирования. Второй закон Менделя — закон расщепления. Полное и неполное доминирование. Закон чистоты гамет и его цитологическое обоснование. Множественные аллели. Анализирующее скрещивание. Дигибридное и полигибридное скрещивание; третий закон Менделя — закон независимого комбинирования.

Хромосомная теория наследственности. Группы сцепления генов. Сцепленное наследование признаков. Закон Т. Моргана. Полное и неполное сцепление генов; расстояние между генами, расположенными в одной хромосоме; генетические карты хромосом.

Генетическое определение пола; гомогаметный и гетерогаметный пол. Генетическая структура половых хромосом. Наследование признаков, сцепленных с полом.

Генотип как целостная система. Взаимодействие аллельных (доминирование, неполное доминирование, кодоминирование и сверхдоминирование) и неаллельных (комплементарность, эпистаз и полимерия) генов в определении признаков. Плейотропия. Экспрессивность и пенетрантность гена.

Демонстрация. Карты хромосом человека. Родословные выдающихся представителей культуры.

Лабораторные и практические работы

Решение генетических задач и составление родословных.

Тема 6.3.

Основные закономерности изменчивости. (8 часов)

Основные формы изменчивости. Генотипическая изменчивость. Мутации. Генные, хромосомные и геномные мутации. Свойства мутаций; соматические и генеративные мутации. Нейтральные мутации. Полулетальные и летальные мутации. Причины и частота мутаций; мутагенные факторы. Эволюционная роль мутаций; значение мутаций для практики сельского хозяйства и биотехнологии. Комбинативная изменчивость. Уровни возникновения различных комбинаций генов и их роль в создании генетического разнообразия в пределах вида (кроссинговер, независимое расхождение гомологичных хромосом в первом и дочерних хромосом во втором делении мейоза, оплодотворение). Эволюционное значение комбинативной изменчивости. Закон гомологических рядов в наследственной изменчивости Н. И. Вавилова.

Фенотипическая, или модификационная, изменчивость. Роль условий внешней среды в развитии и проявлении признаков и свойств. Свойства модификаций: определенность условиями среды, направленность, групповой характер, ненаследуемость. Статистические закономерности модификационной изменчивости; вариационный ряд и вариационная кривая. Норма реакции; зависимость от генотипа. Управление доминированием.

Демонстрация. Примеры модификационной изменчивости.

Лабораторные и практические работы

Изучение изменчивости.

Построение вариационной кривой (размеры листьев растений, антропометрические данные учащихся).

Тема 6.4.

Генетика человека. (2 часа)

Методы изучения наследственности человека: генеалогический, близнецовый, цитогенетический и др. Генетические карты хромосом человека. Сравнительный анализ хромосом человека и человекообразных обезьян. Характер наследования признаков у человека. Генные и хромосомные аномалии человека и вызываемые ими заболевания. Генетическое консультирование. Генетическое родство человеческих рас, их биологическая равноценность.

Демонстрация. Хромосомные аномалии человека и их фенотипические проявления.

Лабораторная работа

Составление родословных.

Тема 6.5.

Селекция животных, растений и микроорганизмов. (4 часа)

Центры происхождения и многообразия культурных растений. Сорт, порода, штамм. Методы селекции растений и животных: отбор и гибридизация; формы отбора (индивидуальный и массовый). Отдаленная гибридизация; явление гетерозиса. Искусственный мутагенез. Селекция микроорганизмов. Биотехнология и генетическая инженерия. Трансгенные растения; генная и клеточная инженерия в животноводстве.

Достижения и основные направления современной селекции. Значение селекции для развития сельскохозяйственного производства, медицинской, микробиологической и других отраслей промышленности.

Демонстрация. Сравнительный анализ пород домашних животных, сортов культурных растений и их диких предков. Коллекции и препараты сортов культурных растений, отличающихся наибольшей плодовитостью.

Основные понятия. Ген. Генотип как система взаимодействующих генов организма. Признак, свойство, фенотип. Закономерности наследования признаков, выявленные Г. Менделем. Хромосомная теория наследственности. Сцепленное наследование; закон Т. Моргана. Генетическое определение пола у животных и растений. Изменчивость.

Наследственная

и ненаследственная изменчивость. Мутационная и комбинативная изменчивость. Модификации; норма реакции. Селекция; гибридизация и отбор. Гетерозис и полиплоидия, их значение. Сорт, порода, штамм.

Умения. Объяснять механизмы передачи признаков и свойств из поколения в поколение, а также возникновение у потомков отличий от родительских форм. Составлять простейшие родословные и решать генетические задачи. Понимать необходимость развития теоретической генетики и практической селекции для повышения эффективности сельскохозяйственного производства и снижения себестоимости продовольствия.

Межпредметные связи. Неорганическая химия. Защита природы от воздействия отходов химических производств.

Органическая химия. Строение и функции органических молекул: белки, нуклеиновые кислоты (ДНК, РНК).

Физика. Дискретность электрического заряда. Основы молекулярно-кинетической теории. Статистический характер законов молекулярно-кинетической теории. Рентгеновское излучение. Понятие о дозе излучения и биологической защите.

Тематическое планирование 10 класс

$N_{\underline{0}}$	Тема	Количество
п/п		часов.
1	Введение	2
2	Критерии живых систем.	3
3	Возникновение жизни на Земле.	14
4	Учение о клетки.	33
5	Размножение и развитие.	22
6	Основы генетики и селекции.	28
Ито	ΓΟ	102

Тематическое планирование 11 класс

№	Тема	Количество
п/п		часов.
1	Эволюционное учение 38ч	38
2	4. Развитие органического мира 18ч	18
3	Взаимоотоношения организма и среды. Основы экологии 34ч	34
4	Биосфера и человек. Ноосфера	12ч
Ито	0	102